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Background

Consider the Neumann problem on a domain D:
∂u
∂t

= Lu(t, x), t > 0, x ∈ D,

u(T , x) = h(x), x ∈ D̄,

∂u
∂n = 0, x ∈ ∂D,

where Lu = 1
2
trσσ∗(t, x) ∂2

∂xi∂xj
u + b(t, x) ∂u

∂xi
.

When D is smooth and bounded, it is well known that under appropriate

conditions the classical solution u can be represented by

u(t, x) = E
[
h(X t,x(T ))

]
,

where X t,x is the reflected diffusion process starting from x at time t.

What if one replaces Lu with a nonlinear term?
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Background: Viscosity vanishing method

Consider

F (x , u,Du,D2u) = 0, in U ⊂ Rd . (1)

F is continuous and degenerate elliptic, i.e.,

F (x , r , p,X ) 6 F (x , r , p,Y ), for all x ∈ U, r ∈ R, p ∈ Rd ,

provided that X > Y .

Add a viscous term:

−ε∆u + F (x , u,Du,D2u) = 0, in U.

Actually, if uε ∈ C2(U) ∩ C(Ū) is a classical solution of the above equation and

uε → u ∈ C(U) in any compact subset of U. Then for any φ ∈ C2(U),

F (x , u(x),Dφ(x),D2φ(x)) 6 0, provided that u − φ attains its maximum at

x ∈ U.
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Background: Viscosity Solution (M.G. Crandall and

P.L.Lions)

u is called a viscosity subsolution (supersolution resp.) of (1) if for any

φ ∈ C 2(U), and if u − φ attains its local maximum (minimum resp.) at

x ∈ U, the following holds:

F (x , u(x),Dφ(x),D2φ(x)) 6 (> resp.)0.
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Background: Viscosity Solution applied to stochastic

control problem

Controlled diffusion process:

Xs = x +
∫ s

t
b(Xr , αr )dr +

∫ s

t
σ(Xr , αr )dWr ,

α ∈ A, A: the set of adapted processes valued in a compact metric space.

The valued function defined by

V (t, x) := inf
α∈A

E [

∫ T

t

g(s,Xs , αs)ds + h(XT )],

is a viscosity solution to the following nonlinear PDE (HJB equation):

−∂V
∂t

(t, x) + sup
ι∈U
{−Lt,x,ιV (t, x)dt − g(t, x , ι)dt} = 0,

where Lt,x,ιu = 1
2
trσσ∗(t, x , ι) ∂2

∂xi∂xj
u + b(t, x , ι) ∂u

∂xi
.
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Background: Neumann problem on D I
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Background: Neumann problem on D II
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Conditions on D

Set for x ∈ ∂D,

Nx := ∪r>0Nx,r

Nx,r := {n ∈ Rd : |n| = 1, and B(x − rn, r) ∩ D = ∅}.

(A) (Uniform exterior sphere condition) ∃r0 > 0 s.t. Nx = Nx,4r0 6= ∅, ∀x ∈ ∂D.

(B) ∃δ > 0 and ∃β > 1 s.t. ∀x ∈ ∂D, there exists a unit vector lx

satisfying

〈lx ,n〉 >
1

β
, ∀n ∈ ∪y∈B(x,δ)∩∂DNy .

(C) ∃f ∈ C2
b(Rd) and a constant γ > 0 such that ∀x ∈ ∂D and ∀n ∈ Nx ,

Df (x) · n >
γ

8r0
.
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Conditions of D

Remark

(A) ensures that for any x satisfying 0 < d(x , D̄) < 4r0, there exists a

unique π(x) ∈ D̄ s.t. |x − π(x)| = d(x , D̄), π(x)−x
|π(x)−x| ∈ Nx .

(B) is satisfied if D is a Lipschitz domain.

If D is convex, then (A) holds for any r0 > 0 and (B) holds if d = 2 or D

is bounded. (Tanaka, 1979)
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Problem

We are concerned with the following HJB-type PDE with Neumann

boundary: 
− ∂u
∂t

+ H(t, x ,Du,D2u) = 0 in (0,T )× D,

− ∂u
∂n = 0 on (0,T )× ∂D,

u(T , ·) = h(·) on D̄,

(2)

where

H(t, x , q,Q) := max
ι∈U
{−1

2
tr(σσ∗)(t, x , ι)Q − 〈b(t, x , ι), q〉 − g(t, x , ι)},

g , h ∈ Cb, U is a compact metric space.
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Definition of viscosity solution

Set for x ∈ ∂D,

N−x (q) := lim
δ↓0

inf{〈q,−n′〉 : |x ′ − x | < δ, x ′ ∈ ∂D ∪ D2r0 ,n
′ ∈ Nπ(x′)},

N+
x (q) := lim

δ↓0
sup{〈q,−n′〉 : |x ′ − x | < δ, x ′ ∈ ∂D ∪ D2r0 ,n

′ ∈ Nπ(x′)}.

(1) A function u ∈ USC((0,T ]× D̄) is a viscosity subsolution of Eq.(2) if

u(T , x) 6 h(x) for x ∈ D̄,

and for any φ ∈ C1,2((0,T )× D̄), whenever (t, x) ∈ (0,T )× D̄ is a local

maximum point of u − φ, then

if (t, x) ∈ (0,T )× D, − ∂φ
∂t

(t, x) + H(t, x ,Dxφ,D
2
xφ) 6 0,

if (t, x) ∈ (0,T )× ∂D,

min
{
− ∂φ

∂t
(t, x) + H(t, x ,Dxφ,D

2
xφ),N−x (Dxφ)

}
6 0.
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Definition of viscosity solution

(2) A function u ∈ LSC((0,T ]× D̄) is a viscosity supersolution of Eq.(2)

if u(T , x) > h(x) for x ∈ D̄,

and for any φ ∈ C1,2((0,T )× D̄), whenever (t, x) ∈ (0,T )× D̄ is a local

minimum of u − φ, then

if (t, x) ∈ (0,T )× D, − ∂φ
∂t

(t, x) + H(t, x , u(t, x),Dxφ,D
2
xφ) > 0,

if (t, x) ∈ (0,T )× ∂D,

max{− ∂φ
∂t

(t, x) + H(t, x , u(t, x),Dxφ,D
2
xφ),N+

x (Dxφ)
}
> 0.



PDEs with Neumann conditions
On relations of viscosity and distribution solutions

HJB equation with Neumann boundary

Theorem(Ren, W., 2019)

Assume

(H) σ and b are bounded, Lipschitz continuous and supported in D ∪D4r0 .

Then Eq.(2) has a unique viscosity solution u. Moreover, u has the

following representation:

V (t, x) = inf
α∈A

E [

∫ T

t

g(s,X t,x(s), α(s))ds + h(X t,x(T ))], (3)

where X t,x is the unique solution to the controlled reflected SDE:

X (s) = x +

∫ s

t

σ(X (r), α(r))dW (r) +

∫ s

t

b(X (r), α(r))dr + K(s),

α ∈ A: the set of progressively measurable processes taking values in a

compact metric space U.
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HJB equation with Neumann boundary

V is the corresponding value function satisfying that for every

(t, x) ∈ (0,T ]× D̄ and any stopping time τ valued in [t,T ],

(1) For all α ∈ A,

V (t, x) 6 E
(∫ τ

t

g(s,X t,x,α(s), α(s))ds + V (τ,X t,x,α(τ))
)
.

(2) For any δ > 0, ∃α ∈ A s.t.

V (t, x) + δ > E
(∫ τ

t

g(s,X t,x,α(s), α(s))ds + V (τ,X t,x,α(τ))
)
.
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HJB equation with Neumann boundary

Take ϕ(x) := ρ(d(x , D̄)2) where ρ ∈ C1, increasing, and

ρ(t) =

t, t ∈ [0, 4r2
0 ];

9r2
0 , t > 9r2

0 .

Let Dr := {x ∈ Rd , 0 < d(x ,D) < r}.
(i) ϕ ∈ C 1

b (Rd), and ∇ϕ is bounded and Lipschitz continuous.

(ii) ϕ(x) = |x − π(x)|2 for x ∈ D2r0 .

Consider the penalized equation:

X t,x
n (s) = x +

∫ s

t

b(X t,x
n (r))dr +

∫ s

t

σ(X t,x
n (r))dw(r) (4)

−n

2

∫ s

t

∇ϕ(Xn(r))dr . (5)
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HJB equation with Neumann boundary

Proposition. (Ren, W. 2019)

Assume (A)-(C) and (H) hold. Then for any T > 0 and R > 0,

sup
(t,x,α)∈[0,T ]×B(0,R)×U

E [ sup
t6s6T

|X t,x,α
n (s)− X t,x,α(s)|2]→ 0.
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Uniqueness of viscosity solution

Theorem.

Suppose u is a viscosity subsolution bounded from above, and v is a

viscosity supersolution bounded from below of (2), then u 6 v on (0,T ]× D.

Test function:

ψ(t, s, x , y) :=
k

2
(|x − y |2 + |t − s|2)− ε(f (x) + f (y)) + δ0(

1

2t
+

1

2s
).
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Nonlinear PDEs with Neumann conditions

Consider the following nonlinear PDE with Neumann boundary condition

in D:
− ∂u
∂t

(t, x)− Lu(t, x)dt − f (t, x , u, σ∗Du(t, x)) = 0 in [0,T )× D,

− ∂u
∂n = 0 on (0,T )× ∂D,

u(T , x) = g(x) x ∈ D̄,

(6)

where D satisfies (A) and (B),

Lu = 1
2
trσσ∗(x) ∂2

∂xi∂xj
u + b(x) ∂u

∂xi
.

Aim: to present results of viscosity solution for (6).
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Nonlinear PDEs with Neumann conditions

Let ρ ∈ C1 be a nondecreasing function s.t.

ρ(t) =

t, t ∈ [0, 4r2
0 ];

9r2
0 , t > 9r2

0 .

and ϕ(x) = ρ(d(x , D̄)2).

Consider the following nonlinear PDE:
− ∂un

∂t
(t, x)− Lun(t, x)dt − f (t, x , un, σ

∗Dun(t, x))

+ n
2
〈Dun(t, x),∇ϕ(x)〉 = 0, in [0,T )× Rd ,

un(T , x) = g(x) x ∈ Rd ,

(7)
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Nonlinear PDEs with Neumann conditions

Assumptions.

(i) b, σ are bounded and continuous.

(ii) σσ∗(x) > a0I for some a0 > 0.

(iii) f : [0,T ]× Rd × R× Rd → R and g : Rd → R are continuous and

(y ′ − y)
(
f (t, x , y ′, z)− f (t, x , y , z)

)
6 α|y ′ − y |2 for some α ∈ R;

|f (t, x , y , z)− f (t, x , y , z ′)| 6 l1|z − z ′| for some l1 > 0;

|f (t, x , y , 0)| 6 l2(1 + |y |), |g(x)| 6 l3(1 + |x |).

Theorem.(Wang, W., 2023)

Under Assumptions (i)-(iii), there exist functions un : [0,T ]× Rd → R and

u : [0,T ]× D̄ → R s.t. un is a viscosity solution of (7), u is a viscosity solution

of (6). Moreover,

un(t, x)→ u(t, x), (t, x) ∈ [0,T ]× D̄.
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Some key results I

(1)!For every n > 1, the following equation has a weak solution X t,x
n :

dX t,x
n (s) = b(X t,x

n (s))ds + σ(X t,x
n (s))dW (s)− n

2
ϕ(X t,x

n (s))ds, X t,x
n (t) = x ∈ D̄.

And X t,x
n ,K t,x

n := − n
2

∫ ·
t
ϕ(X t,x

n (s))ds converge in distribution w.r.t. the

uniform topology to X t,x , K t,x , which solves the following RSDE:

dX t,x(s) = b(X t,x(s))ds + σ(X t,x(s))dW (s) + dK t,x(s), X t,x(t) = x ∈ D̄.

(2)!(X t,x , K t,x) is cont. in distribution w.r.t. (t, x).
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Some key results I

(3)!Denote by (Y n,t,x ,Z n,t,x) and (Y t,x ,Z t,x) the solutions to BSDEs:

Y n,t,x
s = g(X n,t,x(T ))+

∫ T

s

f (r ,X n,t,x(r),Y n,t,x(r),Z n,t,x(r))dr−
∫ T

s

Z n,t,x(r)dWr .

Y t,x
s = g(X t,x(T )) +

∫ T

s
f (r ,X t,x(r),Y t,x(r),Z t,x(r))dr −

∫ T

s
Z t,x(r)dWr .

Set

Un,t,x(s) :=

∫ s

t

Z n,t,x(r)dWr , U t,x(s) :=

∫ s

t

Z t,x(r)dWr .

(Y n,t,x ,Un,t,x) converges in distribution w.r.t. S-topology to (Y t,x ,U t,x).

(4)!If (tn, xn)→ (t, x), then there exists a subsequence {nk} ⊂ {n} s.t.

Y tnk ,xnk converges in distribution w.r.t. S-topology to Y t,x .
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The S-topology (Jakubowski, 1997) I

I xn, x0 ∈ D([0, 1];R), xn converges to x0 in the S-topology if for each

ε > 0, ∃vn,ε ∈ BV ([0, 1]), n = 0, 1, 2, · · · s.t.

(1) supn supt∈[0,1] |xn(t)− vn,ε(t)| 6 ε, n = 0, 1, 2, · · ·

(2) vn,ε
w∗−−→ v0,ε.
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The S-topology (Jakubowski, 1997) I

I For Γ ⊂ D([0, 1];R), if for each ε > 0 and each x ∈ Γ,

∃vx,ε ∈ BV ([0, 1]) and

sup
x∈Γ

sup
t∈[0,1]

|x(t)− vx,ε(t)| 6 ε, sup
x∈Γ

Var(vx,ε) <∞. (8)

Then there exists a sequence {xn} ⊂ Γ, x ∈ D([0, 1];R) such that xn
S−→ x .

I Conversely, if for every subsequence {xn} ⊂ Γ, there exists a

subsequence converging in the S-topology to some x ∈ D([0, 1];R). Then (8)

holds for the set Γ.
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On relations of viscosity and distribution solutions
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Background

Consider the following PDE:

− 1

2
trσσ∗(x)

∂2

∂xi∂xj
u − b(x)

∂u

∂xi
+ c(x)u = f (x), in D, (9)

where D is an open, bounded domain and b ∈W 1,∞(D), σ ∈W 2,∞(D).

Definition of distribution solution

A function u ∈ C(D) is a distribution sub-solution (super-solution resp.) of

(9) if for any φ ∈ D+(D) := {φ ∈ C2
0 (D)|φ > 0},∫

D

(uL∗φ− f φ)dx 6 (> resp.)0

where L∗ is the adjoint operator of L.
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Background

P.L.Lions (1984) proved that the following are equivalent:

(1) u is a viscosity subsolution of (9).

(2) u is a distribution subsolution of (9).

(3) u ∈ C (D) and for all ε > 0, any d(x , ∂D) > ε, the following M

is a submartingale:

M(t ∧ τε) := u(Xt∧τε) exp{−
∫ t∧τε

0

c(Xr )dr}

+

∫ t∧τε

0

f (Xs) exp{−
∫ s∧τε

0

c(Xr )dr}ds,

where X is the diffusion process associated with L and τε is the

first exit time of X from {x ∈ D; d(x , ∂D) > ε}.
Ishii (1994) has presented an analytic proof for the equivalence between

(1) and (2).
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Problem

Consider the following Robin problem in a domain D:
Lu(x) = −aij(x)

∂2u

∂xi∂xj
− bi (x)

∂u

∂xi
= f (x), x ∈ D,

Bu(x) = −aij(x)
∂u

∂xj
ni (x) = 0, x ∈ ∂D,

(10)

where D is of C 3, σij ∈W 2,∞(D̄), bi ∈W 1,∞(D̄), and n : the inward unit

normal vector at ∂D.
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A function u ∈ C(D) is a distribution sub-solution (super-solution resp.) of

(10) if ∫
D

(uL∗φ− f φ)dx 6 (> resp.)0 (11)

for any φ ∈ D+(D) := {φ ∈ C2
0 (D)|B∗φ = 0, φ > 0}, where

L∗φ = − ∂2

∂xi∂xj
(aijφ) +

∂

∂xi
(biφ), B∗φ = −aij(x)

∂φ

∂xj
ni (x)− 〈b̃, n〉φ,

where b̃i := bi −
∂aij
∂xj

.
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Consider the SDE with oblique reflection in D:
dXt = σ(Xt)dWt + b(Xt)dt + Kt t ∈ [0,T ]

X0 = x ∈ D,

Kt =

∫ t

0

γ(Xs)d|K |s , |K |t =

∫ t

0

1(Xs∈∂D)d|K |s ,

where 〈γ(x), n(x)〉 > ν0 for some ν0 > 0.
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Theorem (Ren-W.-Zheng, 2020)

If u, f ∈ C(D), the following are equivalent:

(1) u is a viscosity sub-solution (respectively, super-solution) of (10);

(2) For all x ∈ D,

Mt := u(Xt) +

∫ t

0

f (Xs)ds

is a sub-martingale (respectively, super-martingale).

Comparison principle of viscosity solutions.

Moment estimates of X .

E sup
s∈[0,t]

|Xs − x |2p 6 Cpt
p, E |K |2ps,t 6 Cp|t − s|p.
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Theorem (Ren-W.-Zheng, 2020)

Suppose u, f ∈ C(D) and 〈b̃(x), n(x)〉 6 0 for x ∈ ∂D. If Mt is a

sub-martingale (respectively, super-martingale), then u is a distribution

sub-solution (respectively, super-solution) of (10).

Stability of solutions of RSDEs.

Green’s formula.

Feymann Kac’s representation.
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Theorem (Ren-W.-Zheng, 2020) Suppose D is smooth sufficiently and

〈b̃(x), n(x)〉 6 0 for x ∈ ∂D, u, f ∈ C(D), and u is a distribution sub-solution

(respectively, super-solution) of (10), then Mt is a sub-martingale (respectively,

super-martingale).
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Semilinear PDEs with Neumann boundary conditions

Now we consider the following semilinear PDE in an open, bounded and

C 3 domain D:
−∂u
∂t

+ Lu(t, x) = f (t, x , u(x)), (t, x) ∈ [0,T )× D,

Bu(t, x) = −aij(t, x)
∂u

∂xj
ni (x) = 0, (t, x) ∈ [0,T )× ∂D,

u(T , x) = g(x), x ∈ D̄,

(12)

where D is of C 3, Lu(t, x) := −aij(t, x) ∂2u
∂xi∂xj

− bi (t, x , u(t, x)) ∂u
∂xi

.
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A function u ∈ C([0,T ]× D) is called a distribution sub-solution of (12) if

for any φ ∈ D+([0,T ]× D) := {φ ∈ C1,2([0,T )× D)|B∗φ = 0, ∀(t, x) ∈
[0,T )× ∂D;φ > 0},∫

D

(
u(T )φ(T )− u(0)φ(0)

)
dx +

∫ T

0

∫
D

(−∂φ
∂t

u + uL∗φ− f (t, x , u)φ)dxdt 6 0

(13)

where L∗, B∗ are the formal adjoint operators of L, B.
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Assumptions

∃c > 0, and α < 0 satisfying that for any t, s ∈ [0,T ],

x , x ′ ∈ Rd , y , y ′ ∈ R,

|b(t, x , y)− b(s, x ′, y ′)|+ ‖σ(t, x)− σ(s, x ′)‖ 6 c(|t − s|+ |x − x ′|+ |y − y ′|);

〈y − y ′, f (t, x , y)− f (t, x , y ′)〉 6 α|y − y ′|2;

|f (t, x , y)− f (s, x ′, y)| 6 c(|t − s|+ |x − x ′|);

|g(x)− g(x ′)| 6 c|x − x ′|.

It is known that when α 6 −α0 for some α0, the FBSDE admits a unique

solution (X t,x ,K t,x ,Y t,x ,Z t,x) (Ma-Yong, 1999):

Xs = x +

∫ s

t

b(r ,Xr ,Yr )dr +

∫ s

t

σ(r ,Xr )dWr + Ks , s ∈ [t,T ];

Ys = g(XT ) +

∫ T

s

f (r ,Xr ,Yr )dr −
∫ T

s

ZrdWr , s ∈ [0,T ].

And u(t, x) := Y t,x
t is a viscosity solution to Eq.(12).
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Theorem(Ren, Wang, W., 2023)

Suppose the above assumptions hold. Then the following are equivalent:

(1) u(t, x) is a viscosity subsolution to Eq.(12).

(2) Ms := u(s,X t,x
s ) +

∫ s

t
f (r ,X t,x

r , u(r ,X t,x
r ))dr is a submartingale.

If in addition, 〈b(t, x , y)− ∂aij
∂xj
, n(x)〉 6 0 for x ∈ ∂D, then either of (1) or (2)

implies that

(3) u is a distribution subsolution of Eq.(12).

Comparison principle of viscosity solutions.

Picard approximation results of FBSDEs.

(t, x)→ Y t,x is continuous.
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Thank you!


	PDEs with Neumann conditions
	On relations of viscosity and distribution solutions

