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Outline

@ Viscosity solutions of nonlinear PDEs with Neumann boundary

conditions

@ On relations of viscosity and distribution solutions.



PDEs with Neumann conditions

Background

Consider the Neumann problem on a domain D:
% = Lu(t,x), t>0, x€D,
u(T,x)=h(x), xeD,

gu=0, xe€0D,

on

where Lu = troo™(t, x) 52— o Ut b(t,x)2%
When D is smooth and bounded, it is weII known that under appropriate

conditions the classical solution u can be represented by
u(t,x) = E[h(Xt’X(T))},

where X" is the reflected diffusion process starting from x at time t.



PDEs with Neumann conditions

Background

Consider the Neumann problem on a domain D:
% = Lu(t,x), t>0, x€D,
u(T,x)=h(x), xeD,

%_o x € dD,

where Lu = troo™(t, x) 52— o Ut b(t,x)2%
When D is smooth and bounded, it is weII known that under appropriate

conditions the classical solution u can be represented by
u(t,x) = E[h(Xt’X(T))},

where X" is the reflected diffusion process starting from x at time t.

What if one replaces Lu with a nonlinear term?



PDEs with Neumann conditions

Background: Viscosity vanishing method

Consider
F(x,u, Du,D*u) =0, in UC R (1)
F is continuous and degenerate elliptic, i.e.,
F(x,r,p,X) < F(x,r,p,Y), forallxe U, reR, pe ]Rd,

provided that X > Y.
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Background: Viscosity vanishing method

Consider
F(x,u, Du,D*u) =0, in UC R (1)
F is continuous and degenerate elliptic, i.e.,
F(x,r,p,X) < F(x,r,p,Y), forallxe U, reR, pe ]Rd,

provided that X > Y.

Add a viscous term:

—eAu+ F(x,u, Du, D2u) =0, inU.

Actually, if u. € C3(U)NC(U) is a classical solution of the above equation and
u. — u € C(U) in any compact subset of U. Then for any ¢ € C*(U),
F(x, u(x), Dg(x), D*¢(x)) < 0, provided that u — ¢ attains its maximum at

x e U.



PDEs with Neumann conditions

Background: Viscosity Solution (M.G. Crandall and

P.L.Lions)

@ u is called a viscosity subsolution (supersolution resp.) of (1) if for any
¢ € C?(U), and if u — ¢ attains its local maximum (minimum resp.) at

x € U, the following holds:

F(x, u(x), Dg(x), D*(x)) < (> resp.)0.



PDEs with Neumann conditions

Background: Viscosity Solution applied to stochastic

control problem

Controlled diffusion process:
Xs =x+ [ b(X;,ar)dr + [7 o(X;, ar)dW,,

a € A, A: the set of adapted processes valued in a compact metric space.



PDEs with Neumann conditions

Background: Viscosity Solution applied to stochastic

control problem

Controlled diffusion process:
Xs =x+ [ b(X;,ar)dr + [7 o(X;, ar)dW,,
a € A, A: the set of adapted processes valued in a compact metric space.

The valued function defined by
T
V(tx) = inf, E[/ g(s, Xs, as)ds + h(X7)],
@ t
is a viscosity solution to the following nonlinear PDE (HJB equation):

7%7\;(1?7)() + SUp{iLt,x,L V(t,X)dt — g(t7x, L)dt} — 0’
tevu

where Ly, u = 2troo™(t, x,¢) 52— axaxg Ut b(t,x, 1) 2L



PDEs with Neumann conditions

Background: Neumann problem on D |

@ P.Hsu (1985), T.S.Zhang (1990) Probabilistic approach to the Neumann

problem.

@ Pardoux-Zhang(1998), semilinear PDEs with nonlinear boundary

conditions (generalized BSDEs, smooth domains).
@ Zilinescu (2011), HJB equations (convex domains)

@ Bahlali-Maticiuc-Z3linescu (2013), semilinear PDEs with nonlinear
Neumann boundary conditions (BSDEs, smooth domains).
@ J. Ren and W. (2013), HJB integro-differential equations (convex

domains)

@ X.Yang, T.S. Zhang (2014), semilinear elliptic PDEs and BSDEs with

singular coefficients.
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Background: Neumann problem on D Il

@ S.Tang and J.Li (2015) Stochastic optimal control problem of rsdes in

convex domains

@ C.Wong, X. Yang, J. Zhang (2022) Neumann problems for PDEs with

nonlinear divergence terms.
@ C.Wang, S. Yang, T.S.Zhang (2021) Reflected BM with singular drift.

@ X.Huang and F.Wang (2022), F.Wang (2023) Distribution dependent

RSDEs and nonlinear Neumann problem



PDEs with Neumann conditions

Conditions on D

Set for x € 0D,

Nx = Ur>ONx,r
Ny, :={neR?:|n|=1, and B(x — rn,r) N D = 0}.

(A) (Uniform exterior sphere condition) 3ry > 0 s.t. Ny = Ny, # 0, Vx € OD.
(B) 36 > 0 and 38 > 1 s.t. Vx € 9D, there exists a unit vector I

satisfying
1
<IX7 n> > Ba Vn € UyEB(x,5)ﬁE)DNy-
(C) 3f € C2(RY) and a constant ~ > 0 such that Vx € 9D and Vn € N,

5
Df(x)-n > ——.
(x)-n> g



PDEs with Neumann conditions

Conditions of D

Remark

@ (A) ensures that for any x satisfying 0 < d(x, D) < 4ry, there exists a

unique 7(x) € D s.t. |x — m(x)| = d(x, D), ~ZE=% € N,

@ (B) is satisfied if D is a Lipschitz domain.

@ If D is convex, then (A) holds for any ro > 0 and (B) holds if d =2 or D
is bounded. (Tanaka, 1979)



PDEs with Neumann conditions

Problem

We are concerned with the following HJB-type PDE with Neumann

boundary:
—%4 4+ H(t,x,Du,D’u) =0 in (0,T)x D,
—94=0 on (0,T)x 0D, )
u(T,)=h(-) on D,

where

H(t7Xa q, Q) = Teag{f%tr(aa*)(t,x, L)Q - <b(t7X7 L)7 q> - g(tv X, [’)}7

g, h €Cp, Uis a compact metric space.



PDEs with Neumann conditions

Definition of viscosity solution

Set for x € 0D,

N (q) = léTS inf{(q, —n') : [x' = x| < 6, € ID U Dy, n" € Ny()},

Ni(q) = I6i$ sup{(q, —n’) : [x' = x| < &,x" € ID U Dpy,n" € Ny(e) }.

(1) A function u € USC((0, T] x D) is a viscosity subsolution of Eq.(2) if
u(T,x) < h(x) for x € D,
and for any ¢ € C*?((0, T) x D), whenever (t,x) € (0, T) x D is a local
maximum point of u — ¢, then
® if (t,x) € (0, T) x D, —52(t,x) + H(t, x, Dx¢, Di¢) < 0
° if(t,x)e(o T) x dD,
min{ — 22(t,x) + H(t, x, Dx$, D}¢), N5 (Dxop) } <



PDEs with Neumann conditions

Definition of viscosity solution

(2) A function u € LSC((0, T] x D) is a viscosity supersolution of Eq.(2)
if u(T,x) > h(x) for x € D,
and for any ¢ € C*?((0, T) x D), whenever (t,x) € (0, T) x D is a local
minimum of u — ¢, then
@ if (t,x) € (0, T) x D, —%2(t,x) + H(t,x, u(t, x), Dx, D3¢) > 0,

@ if (t,x) € (0, T) x 9D,
max{—22(t,x) + H(t,x, u(t, x), D«g, D2$), Nif (Dx¢p) } > 0.



PDEs with Neumann conditions

HJB equation with Neumann boundary

Theorem(Ren, W., 2019)

Assume

(H) o and b are bounded, Lipschitz continuous and supported in D U Day,.
Then Eq.(2) has a unique viscosity solution u. Moreover, u has the

following representation:
V(e = inf, E1[ as.X(5)a9)ds + HX (T )
where X* is the unique solution to the controlled reflected SDE:
X(s) = x+ / o(X(r), a(r)dW(r) + / b(X(r), a(r))dr + K(s),
¢ t

a € A: the set of progressively measurable processes taking values in a

compact metric space U.



PDEs with Neumann conditions

HJB equation with Neumann boundary

V is the corresponding value function satisfying that for every
(t,x) € (0, T] x D and any stopping time T valued in [t, T],
(1) For all « € A,

Ve < E( / (s, X7%(s), a(s))ds + V(7 X“"%())).
t
(2) Forany § >0, 3a € As.t.

V(t,x)+ 0> E(/: g(s, X% (s), a(s))ds + V(r, x*»Xva(T))).



PDEs with Neumann conditions

HJB equation with Neumann boundary

Take ¢(x) := p(d(x, D)?) where p € C*, increasing, and
t, t €[0,4r2);
98, t=09rd.

Let D, := {x € RY,0 < d(x, D) < r}.
(i) ¢ € Ci(R?), and V¢ is bounded and Lipschitz continuous.
(i) o(x) = |x — 7T(X)‘2 for x € Day,.

Consider the penalized equation:
X (s) = x—|—/ b(X;™( ))dr—!—/ (X3 (r))dw(r) (4)
t
-5 [ vetatr (5)



PDEs with Neumann conditions

HJB equation with Neumann boundary

Proposition. (Ren, W. 2019)
Assume (A)-(C) and (H) hold. Then for any T > 0 and R > 0,

sup E[ sup |X}%(s) — X"*(s)]’] — 0.
(t,x,a)€[0, T]xB(0,R)xU  t<s<T



PDEs with Neumann conditions

Uniqueness of viscosity solution

Theorem.
Suppose u is a viscosity subsolution bounded from above, and v is a
viscosity supersolution bounded from below of (2), then u < v on (0, T] x D.

Test function:

1 1
=+ 2)

Bt 53 y) = 5 (b= yP 1t = ) = <(FG) + F0)) + ol + o



PDEs with Neumann conditions

Nonlinear PDEs with Neumann conditions

Consider the following nonlinear PDE with Neumann boundary condition
in D:
—9u(t,x) — Lu(t,x)dt — f(t,x,u,0"Du(t,x)) =0 in [0,T)x D,
—%4=0 on (0,T)xdD, (6)
u(T,x)=g(x) xeD,
where D satisfies (A) and (B),

Lu= %trag*(x)%;xju + b(x)g—)‘:i.



PDEs with Neumann conditions

Nonlinear PDEs with Neumann conditions

Consider the following nonlinear PDE with Neumann boundary condition
in D:
—9u(t,x) — Lu(t,x)dt — f(t,x,u,0"Du(t,x)) =0 in [0,T)x D,
~%¢=0 on (0,T)xdD, (6)
u(T,x) = g(x) xeD,
where D satisfies (A) and (B),
_ 1 * 52 Qu
Lu = troo™(x) 05 U + b(x) B

Aim: to present results of viscosity solution for (6).
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Nonlinear PDEs with Neumann conditions

Let p € C' be a nondecreasing function s.t.

t
p(t) =
98, t=9rg.

, t €[0,4r2];

and ¢(x) = p(d(x, D)?).
Consider the following nonlinear PDE:

%”t” (t,x) — Lun(t, x)dt — f(t, x, un, o™ Dun(t, x))

+2(Dun(t,x),Ve(x)) =0, in [0,T) xR, (7)
un(T,x) = g(x) x€R,




PDEs with Neumann conditions

Nonlinear PDEs with Neumann conditions

Assumptions.
(i) b, o are bounded and continuous.
(i) oo™ (x) = aol for some a9 > 0.
(i) f:[0,T] xR x Rx R = R and g : R — R are continuous and
' = y)(f(t,x,y',z) = f(t,x,y,2)) < aly’ — y|? for some a € R;
|f(t,x,y,z) — f(t,x,y,2')| < h|z — 2’| for some / > 0;
(£, %y, 0) < L(L+1y]), |g(x)] < B(L+ |x])-
Theorem.(Wang, W., 2023)
Under Assumptions (i)-(iii), there exist functions u, : [0, T] x R — R and

u:[0,T] x D — R s.t. u, is a viscosity solution of (7), u is a viscosity solution
of (6). Moreover,

us(t,x) = u(t,x), (t,x)e[0,T]xD.



PDEs with Neumann conditions

Some key results |

(1)~ For every n > 1, the following equation has a weak solution X;}”*:
dXy*(s) = b(Xs™(s))ds + a(Xy*(s))dW(s) — gap(X,f‘X(s))ds, Xp*(t) =x € D.

And X, Ky = =3 [ o(X;(s))ds converge in distribution w.r.t. the
uniform topology to X**, K", which solves the following RSDE:

dX(s) = B(X"(s))ds + o (X"(s))dW(s) + dK"*(s), X"*(t) =x € D.

(2)~ (X**, K" ) is cont. in distribution w.r.t. (t,x).



PDEs with Neumann conditions

Some key results |

(3)~ Denote by (Y™"*, Z™"*) and (Y**, Z"*) the solutions to BSDEs:

T T
YO = (X [ A X, Y (0, 2 (e [ 20 (),

s

YO = g(XPX(T)) + [T F(r, X2X(r), YOX(r), Z9%(r))dr — [ Z%(r)dW,.
Set

u™(s) ::/ Z"(r)dW,, U™(s) ;:/ Z"(r)dW..
t t

(Y™t U™M5*) converges in distribution w.r.t. S-topology to (Y%, U"¥).
(4)~ If (tn, xn) = (t, x), then there exists a subsequence {nx} C {n} s.t.

Y™ *n converges in distribution w.r.t. S-topology to Y*"*.



PDEs with Neumann conditions

The S-topology (Jakubowski, 1997) |

> X, xo € D([0,1]; R), x, converges to xo in the S-topology if for each
e >0, v, € BV([0,1]), n=0,1,2,--- s.t.

(1) sup,sup.epo [xa(t) = vae(t) <& n=0,1,2,---

(2) Vn,e N Voe-



PDEs with Neumann conditions

The S-topology (Jakubowski, 1997) |

» For I C D([0,1]; R), if for each € > 0 and each x €T,
Jvy,e € BV([0,1]) and

sup sup [x(t) — vx,e(t)| <€, sup Var(vye) < oco. (8)
xel te[0,1] xelr

Then there exists a sequence {x,} C ', x € D([0, 1]; R) such that x, 2 x.
» Conversely, if for every subsequence {x,} C I, there exists a
subsequence converging in the S-topology to some x € D([0, 1]; R). Then (8)

holds for the set I'.
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@ On relations of viscosity and distribution solutions



On relations of viscosity and distribution solutions

Background

Consider the following PDE:

d? ou
Ox;0x; u = b(x) ox;

1 *
— =troo”(x)

> + c(x)u = f(x), in D, (9)

where D is an open, bounded domain and b € W>°(D), o € W?>°(D).
Definition of distribution solution
A function u € C(D) is a distribution sub-solution (super-solution resp.) of
(9) if for any ¢ € D.(D) := {6 € C3(D)|¢ > 0},

[ w70~ fo)ax < (> resp o
D

where L* is the adjoint operator of L.



On relations of viscosity and distribution solutions

Background

@ P.L.Lions (1984) proved that the following are equivalent:

(1) wuis a viscosity subsolution of (9).
(2) uis a distribution subsolution of (9).
(3) ue C(D) and for all € > 0, any d(x,9D) > ¢, the following M

is a submartingale:

tATe
M(tAT) = u(Xear,)exp{— / X, )dr}

t/\'r€ SATe
+ / Xs) exp{— / X.)dr}ds,
0

where X is the diffusion process associated with L and 7, is the
first exit time of X from {x € D; d(x,0D) > €}.
@ Ishii (1994) has presented an analytic proof for the equivalence between
(1) and (2).
I



On relations of viscosity and distribution solutions

Problem

Consider the following Robin problem in a domain D:

o%u Ou
Lu(x) = 73U(X)m — bi(x) o f(x), xe€D, w0
Bu(x) = 7aij(X)87u'ni(X) =0, x € 0D,

0x;
where D is of C3, o7 € W?°°(D), b’ € W*>°(D), and n : the inward unit

normal vector at 9D.



On relations of viscosity and distribution solutions

A function u € C(D) is a distribution sub-solution (super-solution resp.) of

(10) if
/(uL*qﬁ — f¢)dx < (> resp.)0 (11)
D
for any ¢ € D+(D) ={¢ €C3(D)|B*¢ =0,¢ > 0}, where
L6 = — g (as0) + 5 (b). B0 = —ay(x) 3En(x) = (Bunjo,

J

~ aa..
where b; := b; — L.
(] ) aXJ




On relations of viscosity and distribution solutions

Consider the SDE with oblique reflection in D:

Cl)<1L = O'(Xt)th + b(Xt)dt + Kt te [O, T]
Xo=x€ 5,

t t
Ke = / VX)dIKls Kl = / Lox.cond|K]s,
0 0

where ((x), n(x)) > 1o for some v > 0.



On relations of viscosity and distribution solutions

Theorem (Ren-W.-Zheng, 2020)
If u, f € C(D), the following are equivalent:

(1) wu is a viscosity sub-solution (respectively, super-solution) of (10);
(2) Forall x € D,
t
Mt = U(Xt) +/ f(Xs)ds
0

is a sub-martingale (respectively, super-martingale).
@ Comparison principle of viscosity solutions.
@ Moment estimates of X.

E sup |Xs — x| < Got?, E|K|?, < Golt — s
s€[0,t]
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Theorem (Ren-W.-Zheng, 2020)

Suppose u, f € C(D) and (b(x),n(x)) <0 for x € dD. If M; is a
sub-martingale (respectively, super-martingale), then v is a distribution
sub-solution (respectively, super-solution) of (10).

@ Stability of solutions of RSDEs.

@ Green's formula.

@ Feymann Kac's representation.
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Theorem (Ren-W.-Zheng, 2020) Suppose D is smooth sufficiently and
(b(x),n(x)) <0 for x € AD, u, f € C(D), and u is a distribution sub-solution
(respectively, super-solution) of (10), then M, is a sub-martingale (respectively,

super-martingale).
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Semilinear PDEs with Neumann boundary conditions

Now we consider the following semilinear PDE in an open, bounded and
€3 domain D:

_Ou
at

Bu(t,x) = —a,-j(t,x)%n,-(x) —0, (t,x)€[0,T) x aD, (12)

u(T,x)=g(x), x €D,

+ Lu(t, x) = f(t,x,u(x)), (t,x)€[0,T)x D,

where D is of C3, Lu(t, x) := —aj(t, ><)6ai — bi(t, x, u(t, x)) 2L

X; OXj ox; °
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A function u € C([0, T] x D) is called a distribution sub-solution of (12) if

for any ¢ € D4 ([0, T] x D) := {¢ € C**([0, T) x D)|B*¢ = 0,V(t,x) €
[0, T) x OD; ¢ > 0},

/D (u(T)p(T) — u(0)¢(0))dx + /0 /D(f%u +ul™¢p — f(t,x,u)p)dxdt <0

(13)

where L*, B* are the formal adjoint operators of L, B.



On relations of viscosity and distribution solutions

Assumptions
Jec > 0, and a < 0 satisfying that for any t,s € [0, T],
x, X' €RY, y, y' €R,

1b(t,x,y) = b(s, X', y" )| + [|lo(t,x) — o(s,x")|| < c(|t = s| + [x = x| + |y = y']);
(y =y f(t,x,y) = f(t,;x,y")) <aly —y'[%
1f(t,x,y) — f(s,x',y)| < (|t = s|+ |x = x’

)i
lg(x) — g(x)| < clx — x|

It is known that when o < —ap for some ap, the FBSDE admits a unique
solution (X", K**, Y** Z"*) (Ma-Yong, 1999):

Xs = x —|—/ b(r, X, Yy)dr —|—/ o(r,Xr)dW, + Ks, s €[t, T];
t t
T T
Ys = g(X7) +/ f(ry X, Ye)dr — / Z,dW,, s €0, T].

And u(t,x) := Y} is a viscosity solution to Eq.(12).
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Theorem(Ren, Wang, W., 2023)

Suppose the above assumptions hold. Then the following are equivalent:
(1) u(t,x) is a viscosity subsolution to Eq.(12).
(2) Ms:=u(s, X*) + [ f(r, X, u(r, X{))dr is a submartingale.

If in addition, (b(t,x,y) — ga

i n(x)) <0 for x € OD, then either of (1) or (2)

X

implies that

(3) wuis a distribution subsolution of Eq.(12).

@ Comparison principle of viscosity solutions.
@ Picard approximation results of FBSDEs.

@ (t,x) — Y"* is continuous.
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Thank you!
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